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A NEW BASTADIN FROM THE SPONGE PSAMMAPLYSILLA PURPUREA
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Department of Chemistry, Unisversity of Hawaii at Manoa, Honolulu, Hawaii 96822

and MICHELLE KELLY-BORGES
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ABSTRACT.—A new bastadin 2 and the previously reported bastadins 5 {3}, 7 {4}, and 12
(formetly bastadin 9) [§} were isolated from the Verongid sponge Psammaplysilla purpurea col-
lected in Pohnpei. Compound 2 is mildly cytotoxic against several cell lines and inhibits the en-
zymes topoisomerase II and dehydrofolate reductase.

Sponges of the order Verongida char-
acteristically contain metabolites that
are biogenetically derivable from halo-
genated tyrosine (1). These compounds
range from aeroplysinin 1 {1} (2), which
has recently been shown (J.R. Carney
and K.L. Rinehart, manuscript in prep-
aration) to be biosynthesized from tyro-
sine, monotyrosine, and dibromotyro-
sine (3), to the more elaborate macro-
cyclic bastadins, which are biogeneti-
cally derivable from four tyrosine units
by oxidative phenolic coupling of two
tyramine-tyrosine units (4-8). Bastadins
have previously been reported only from
Ianthella basta. We now report the isola-
tion and structure of a new bastadin 14
{21, the major metabolite, and the pre-
viously reported bastadins 5 [3} (5), 7
[41(5), and 12 (formerly 9) {5} (7), from
the Verongid sponge Psammaplysilla pur-
purea (Carter) collected in Pohnpei, Fed-
erated States of Micronesia.

Previous studies of the bastadins were
in press simultaneously (6-8), unfortu-
nately leading to the assignment of the
same number to different bastadins. We
propose that the compounds be renum-
bered in the order in which they were re-
ceived for publication. Thus, bastadins
8-11 of Pordesimo and Schmitz (6) re-
tain their original numbering, bastadin
9 of Miao ¢t 2/. (7) is renumbered as bas-
tadin 12 {bastadin 8 from Miao ez 2/. (7)
coincidentally has the same structure as
bastadin 8 of Pordesimo and Schmitz
(6)1, and bastadin 12 of Butler ez /. (8)
becomes bastadin 13.

The CH,Cl,-iPrOH (1:1) extract of the
sponge showed moderate cytotoxicity
against several cell lines. The extract was
partitioned between hexanes-MeOH
(2:1), and the MeOH layer was concen-
trated to asolid. Centrifugal countercut-
rent chromatography [EtOAc-heptane-
MeOH-H,O (7:4:4:3)} of the MeOH
layer residue gave nearly pure 2 and 5.
Reversed-phase hplc of the fraction con-
taining 2 removed trace amounts of 3
and 4 to yield pure 2.

The molecular formula of 2 was
C;4H,sBrsN4Og by hrfabms, indicating
that 2 was isomeric with bastadin 4 6],
but its 'H- and *C-nmr spectra were
significantly different from those reported
for 6 (5,6). 'H-'H nmr decoupling ex-
periments of the downfield region indi-
cated the presence of one symmetric and
two unsymmetric tetrasubstituted aro-
matic rings, and one trisubstituted aro-
matic ring. The 'H-nmr spectrum
(DMSO-dg) of 2 showed exchangeable
proton signals ac & 12.10 (2H, bs),
11.85 (1H, s), 10.31 (1H, d, J=10.2
Hz), 9.87 (1H, bs), and 7.80 (1H, ¢,
J=5.7 Hz), and the BC-nmr spectrum
displayed all 34 carbon signals (Table 1).
HMQC and HMBC nmr experiments
established C-H and C-C connectivities.
A doublet at 8 10.31 showed H-C corre-
lations to alkene (8 110.0, C-6) and
amide carbonyl (161.4, C-3) carbon sig-
nals and was coupled to a one-proton
doublet of doublets at & 7.45. The dou-
blet of doublets, which collapsed to a
single doublet (J = 14.3 Hz) when the
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2 X=Br,Y=Br,Z=H,R=H
4 X=H, Y=Br, Z=H, R=H
6. X=H, Y=Br, Z=Br, R=H
7 X=H, Y=H, Z=Br, R=H
9 X=Br, Y=Br, Z=H, R=Me

spectrum was determined in MeOH-4,
was in turn coupled to a one-proton
doublet at d 6.41. These data indicated
an eneamide system similar to that in
bastadins 4 {6}, 7 {4}, and 11 {7}, but
the proton at & 6.41 showed a correla-
tion to a two-carbon signal at 8 129.5
(C-8 and -12), in addition to correlations
to the alkene and aromatic carbons at &
126.0 (C-5) and 137.6 (C-7). H-C cor-
relations of a two-proton singlet at 3
7.77 to carbon signals at § 110.0 (C-6),
118.1 (2C'’s, C-9 and -11), 129.5 (C-8
and -12), and 145.6(C-10) firmly estab-
lished the structure of the A portion.
H-C correlations were observed be-
tween a broad two-proton singlet at &

[Vol. 56, No. 1

Br

H, X=H, Y=Br
OH, X=Br, Y=H

3.70, typical for benzylic protons adja-
cent to an oxime of the bastadins (4-8),
to the a-oximino amide carbons (C-2
and -3) of the upper portion of the
molecule. The benzylic protons also
showed correlations to aromatic carbon
signals at & 128.3 (C-37) and 117.3 (C-
38). A doublet at 8 7.20, meta-coupled
to a broad singlet at 3 6.40, showed an
H-C correlation to C-38, as well as to a
carbon signal at 8 143.8 (C-34). The
proton at & 6.40 also showed a correla-
tion to C-34 and to C-33 (8 144.8), thus
establishing the 1,3,4,5 substitution
pattern of the D subunit and hence the
structure of the upper portion of the
molecule.
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TABLE 1. Nmr Data for 2 (DMSO-4y).
Position Bc 'H(J, Hz) HMBC
oo oo 27.5 3.70,2H, s
2. 0000 151.5
3.0 ... 161.4 4,5
4. .. ... 10.31, 1H,d(10.2)
5. 126.0 7.45,1H,dd (14.3,10.2) | 4,6
6. ... ... 110.0 6.41, 1H,d (14.3) 4,8,12
7o 137.6 5,6,8,12
- 129.5 7.77,1H,s 6
9. 118.1 8, 12
100 ........ 145.6 8,12
it ... .. 118.1 8,12
12 ... ... 129.5 7.77,1H,s 6
14 ........ 145.0
15 ... .. 141.6 17, 19
16 ........ 110.1 17
17 ... ... 126.4 7.00, 1H,d(1.5) 20
18 . ....... 130.8 20, 21
19 ... ... 111.7 6.18, 1H,d(1.5) 17
20 .. ... 32.8 2.67,2H,t(6.5)
21 ..o 38.3 3.19,2H,q(6.3) 20, 22
22 ... 7.80, 1H, t(5.7)
23 ... 162.9 25
bz SN 150.9 25
25 .00 28.4 3.59,2H,s
26 ... ... 134.4 25,30
27 ... 133.7 7.46, 1H, bs 31
28 . ... 112.8 27
29 ... 150.9 27, 30, 31
30 ... 119.1 6.64, 1H,d (8.3)
31 ..o 130.3 7.14, 1H,dd (8.3, 1.9) 27
33 0.0, 144.8
L 143.8 36, 38
35 ... 110.9
36 ... ... .. 126.0 7.20, 1H,d(1.9)
37 128.3
38 .. ... ... 117.3 | 6.40, 1H, bs 1,36

A broad two-proton singlet at & 3.59
arising from the benzylic protons adja-
cent to the other oxime showed H-C cor-
relations to the a-oximino amide carbon
signals of the lower portion of the
molecule at & 150.9 (C-24) and 162.9
(C-23), as well as to carbon signals at
130.3 (C-31) and 134.4 (C-26). A one-
proton doublet at 6.64 (J=8.3 Hz),
ortho-coupled to a proton at & 7.14,
which was in turn meta-coupled to a
proton at & 7.46 (J=1.9 Hz), also
showed a correlation to C-26. Further
H-C correlations confirmed the struc-
ture of the C portion.

An exchangeable triplet at & 7.80
showed correlations to the amide car-
bonyl (8 162.9, C-23) and to a carbon
signal at 8 38.3 (C-21). A two-proton
triplet at & 2.67 also showed a correla-
tion to this carbon and to the aromatic
carbon signals of subunit B at 130.8 (C-
18) and 126.4 (C-17). A broad two-pro-
ton quartet at 8 3. 19, which collapsed to
a triplet in MeOH-dy, showed correla-
tions to C-23 and a three-bond correla-
tion to C-18, thus connecting the B and
C subunits. The remaining aromatic
protons were meta-coupled (1.5 Hz),
and both showed 3-bond correlations to
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C-15, but only the proton attached to C-
19 showed a correlation to C-14, thus
securing the carbon assignments and
substitution pattern of the aromatic ring
of the B subunit.

The carbon chemical shifts of C-1 (3
27.5) and C-25 (® 28.4) implied that
both oximes had E geometry (9).

W ith the connectivities of the A to D
and B to C subunits established, ms was
used to secure the connectivity of C to D.
An eims of 2 gave an ion fragment clus-
ter at m/z 420/422/424 (1:2:1); hreims
of the ion at m/z 422 indicated a formula
of C;¢H,,"°Br3'BtN,0,, attributable
to the radical cation 8 (4-8).

Although it was reasonable that the
ether linkages between the A and B and
between the C and D rings were from C-
10 to C-14 and C-29 to C-33, the recent
report of bastadin 13 (formerly 12) (8),
with rings A and B linked from C-9 to
C-14, plus discrepancies between our
carbon chemical shift assignments and
those reported for the same subunits by
Pordesimo and Schmitz (6) led us to in-
vestigate further the ether linkages of 2.
Compound 2 was converted to its tet-
ramethyl ether 9 by treatment with Mel
and K,CO; in DMF (4-7), and HMQC
and HMBC experiments established the
C-H and C-C connectivities of 9. The
two O-methyl groups at 8 3.83 and 4.03
showed only the expected three bond H-
C correlations to C-34 (& 147.5) and C-
15 (3 144.3). Both protons attached to
the aromatic ring of subunit B showed
strong three-bond H-C correlations to
C-15, but only the proton attached to C-
19 showed a strong correlation to C-14
(® 150.4). Similarly, both aromatic pro-
tons in D showed H-C correlations to C-
34, and only the proton attached to C-38
showed a correlation to C-33 (d 148.9).
These data confirmed the total structure
of 2.

The possibility that 2 is an artifact de-
rived from dehydration of 5 during iso-
lation can be excluded since we employ-
ed mild conditions which are unlikely to
cause dehydration and since the alkene

[Vol. 56, No. 1

signals of 2 at 8 6.41 and 7.45 were
clearly detectable in the ‘H-nmr spec-
trum of the crude extract. In fact, com-
pound 5 was quite stable; stirring the
compound for 2 weeks in MeOH with
TFA provided no 2, as evidenced by 'H
nmr.

Compound 2 was mildly cytotoxic
against several cell lines. IC;, values of 2
jg/ml were determined in assays against
A-549 lung carcinoma, HT-29 colon
adenocarcinoma human tumor, and the
P-388 murine lymphocytic leukemia
cell lines, and 2.5 pg/ml against the
nontumor CV-1 monkey kidney cell
line. The compound also inhibited the
enzymes topoisomerase-II and dehydro-
folate reductase, with ICs, values of 2.0
and 2.5 pg/ml, respectively.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—
Ir spectra were recorded on a Perkin-Elmer Model
1420 spectrophotometer and uv spectra on a
Hewlett-Packard Model 8452A diode array de-
tector. Nmr spectra were measured on 2 General
Electric GN500 at 500 MHz (‘H) and 125 MHz
(*3C). Mass spectra were provided by the Univer-
sity of Illinois mass spectrometry facility. A P.C.
Inc., multilayer coil separator-extractor was used
for centrifugal countercurrent chromatography at
a flow rate of 3 mi/min at 800 rpm with a no. 10
column (380 ml volume). YMC 5 p ODS and
Rainin Si gel 10 X 250 mm columns were used
for the hplc separations.

TAXONOMY.—The sponge was collected on
June 21, 1990 from a cave at a depth of 3-5 m in
Pingelap Atoll, Pohnpei, Federated States of
Micronesia. The sponge formed a thin encrusta-
tion with a conulose surface. The color in life was
green and turned deep purple after exposure to
air. The sample corresponds most closely to P.
purpurea (Order Verongida, Family Aplysinel-
lidae) as described by Bergquist (10) and Kelly-
Borges and Bergquist (11). A voucher specimen is
on deposit at the Harbor Branch Oceanographic
Museum, Fort Pierce, Florida (catalog number
003:00596).

ISOLATION.—The freeze-dried sponge (7.3 g)
was extracted overnight with 200 ml of CH,Cl,-
iPrOH (1:1), and the residue (0.585 g) was par-
titioned between 200 m! hexanes-MeOH (2:1);
the MeOH layer yielded 0.457 g of a red solid.
The MeOH layer residue was subjected to cen-
trifugal countercurrent chromatography using
EtOAc-heptane-MeOH-H,0 (7:4:4:3), with the
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upper phase as the mobile phase, yielding 96 mg
of nearly pure 2 and 33 mg of 5. Crude 2 was
separated from trace amounts of 3 and 4 by re-
versed-phase hplc [ODS, MeCN-H,0 (56:44), 3

ml/min}.

Bastadin 14 [2}.—Hrfabms m/z [M + H}"
1018.7613 (caled for Cy4Hy6 "Br,'BrsN,Og,
1018.7601); hreims m/z 421.9090 (calcd for
C,eH o °Br®'BIN,O,, 421.9089); eims (rel.
int.) 424 (2.4), 422 (4.5), 420 (2.5), 316 (3.4),
314 (2.6), 303 (2.7), 301 (3.1); ir v max (Nujol)
35003300, 1655, 1580, 1530, 1500, 1455,
1425, 1280, 1245, 1230, 1180 cm ™} uv A max
(MeOH) nm (log €) 284 (4.3), 292 (4.3), 314
(4.4); "H and 'C nmr see Table 1.

Bastadin 14 tetramethyl ether {9}.—Compound
9 was prepared as described (7) from 12 mg of 2.
Si gel hplc [hexanes-EtOAc (1:1), 3 mil/min} of
the reaction mixture gave 6 mg of 12: fabms m/z
M+ H}" centered at 1074.9; 13C nmr (CDCl5)
8 162.3 (C-23), 159.6 (C-3), 152.1 (C-29),
150.9 (C-2), 150.4 (C-24), 150.4 (C-14), 148.9
(C-33), 147.5 (C-34), 146.4 (C-10), 144.3 (C-
15), 136.9 (C-7), 135.5 (C-18), 134.1 (C-27),
133.0 (C-37), 132.5 (C-26), 129.9 (C-31),
129.9 (C-36), 129.8 (C-8 and C-12), 126.7 (C-
17), 124.8 (C-5), 121.3 (C-38), 118.5 (C-9 and
C-11), 118.1 (C-16), 117.9 (C-35), 117.1 (C-
30), 112.5 (C-19), 112.3 (C-28), 110.0 (C-6),
63.7 (MeON), 63.1(15-OMe), 61.1 (34-OMe),
61.0 MeON), 39.4 (C-21), 34.5 (C-20), 29.2
(C-25), 28.3(C-1); 'H amr (CDCl;) 88.44 (1H,
d, J=8.4 Hz, NH-4), 7.57 (2H, s, H-8, -12),
7.47 (1H, d, J = 2.2 Hz, H-27), 7.46 (1H, dd,
J=14.6, 8.4 Hz, H-5), 7.32 (1H, d, J=2.2
Hz, H-36), 7.12 (1H, dd, J=8.4, 2.2 Hz, H-
31), 7.03 (1H, d, J=2.0, H-17), 6.86 (1H, d,
J=2.0 Hz, H-38), 6.71 (1H, t, J=6.5 Hz,
NH-22), 6.47 (1H, d, = 8.4 Hz, H-30), 6.15
(1H, d, J=2.0, H-19), 6.11(1H, d, J=14.6,
H-6), 4.10 B3H, s, NOMe), 4.05 (H, s,
NOMe), 4.03 (3H, s, 15-OMe), 3.85 (2H, bs,
H-1), 3.83 (3H, s, 34-OMe), 3.75 (2H, bs, H-
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25), 3.36 (2H, bq, J=6.5 Hz, H-21), 2.72
(2H, t, J=6.5 Hz, H-20).
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